0
RESEARCH PAPERS

Compressibility of Two-Dimensional Cavities of Various Shapes

[+] Author and Article Information
R. W. Zimmerman

Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Appl. Mech 53(3), 500-504 (Sep 01, 1986) (5 pages) doi:10.1115/1.3171802 History: Received December 03, 1985; Online July 21, 2009

Abstract

Muskhelishvili-Kolosov complex stress functions are used to find the stresses and displacements around two-dimensional cavities under plane strain or plane stress. The boundary conditions considered are either uniform pressure at the cavity surface with vanishing stresses at infinity, or a traction-free cavity surface with uniform biaxial compression at infinity. A closed-form solution is obtained for the case where the mapping function from the interior of the unit circle to the region outside of the cavity has a finite number of terms. The area change of the cavity due to hydrostatic compression at infinity is examined for a variety of shapes, and is found to correlate closely with the square of the perimeter of the hole.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In