Effect of Yield Surface Curvature on Necking and Failure in Porous Plastic Solids

[+] Author and Article Information
R. Becker, A. Needleman

Division of Engineering, Brown University, Providence, RI 02912

J. Appl. Mech 53(3), 491-499 (Sep 01, 1986) (9 pages) doi:10.1115/1.3171801 History: Received July 24, 1985; Revised November 15, 1985; Online July 21, 2009


The effect of material path dependent hardening on neck development and the onset of ductile failure is analyzed numerically. The calculations are carried out using an elastic-viscoplastic constitutive relation that has isotropic hardening and kinematic hardening behaviors as limiting cases and that accounts for the weakening due to the growth of micro-voids. Final material failure is incorporated into the constitutive model by the dependence of the plastic potential on void volume fraction. Results are obtained for both axisymmetric and plane strain tension. Failure is found to initiate by void coalescence at the neck center in axisymmetric tension and within a shear band in plane strain tension. The increased curvature of flow potential surfaces associated with the kinematic hardening solid leads to somewhat more rapid diffuse neck development than occurs for the isotropic hardening solid. However, a much greater difference between the predictions of the two constitutive models is found for the onset of ductile failure.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In