0
RESEARCH PAPERS

Period-Doubling Bifurcations and Modulated Motions in Forced Mechanical Systems

[+] Author and Article Information
S. Tousi, A. K. Bajaj

School of Mechanical Engineering, Purdue University, West Lafayette, Ind. 47907

J. Appl. Mech 52(2), 446-452 (Jun 01, 1985) (7 pages) doi:10.1115/1.3169067 History: Received June 01, 1984; Revised September 01, 1984; Online July 21, 2009

Abstract

Weakly nonlinear and harmonically forced two-degree-of-freedom mechanical systems with cubic nonlinearities and exhibiting internal resonance are studied for their steady-state solutions. Using the method of averaging, the system is transformed into a four-dimensional autonomous system in amplitude and phase variables. It is shown that for low damping the constant solutions of the averaged equations are unstable over some interval in detuning. The transition in stability is due to the Hopf bifurcation and the averaged system performs limit cycle motions near the critical value of detuning. The bifurcated periodic solutions are constructed via a numerical algorithm and their stability is analyzed using Floquet theory. It is seen that the periodic branch connects two Hopf points in the steady-state response curves. For sufficiently small damping, the averaged equations, therefore, have stable limit cycles where the constant solutions are unstable. Reduction in damping results in destabilization of these periodic solutions with one Floquet multiplier leaving the inside of the unit circle through −1. This leads to period-doubling bifurcations in the averaged equations. There is, thus, an interval in detuning parameter over which the constant and the periodic solutions are unstable and the period-doubled solutions are stable. For small enough damping there are cascades of period-doubling bifurcations that ultimately lead to chaotic motions. Some of these sequences seem to be compatible with the Feigenbaum Universality Constant.

Copyright © 1985 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In