The Sliding With Coulomb Friction of a Rigid Indentor Over a Power-Law Inhomogeneous Linearly Viscoelastic Half-Plane

[+] Author and Article Information
J. R. Walton

Department of Mathematics, Texas A&M University, College Station, Texas 77843

J. Appl. Mech 51(2), 289-293 (Jun 01, 1984) (5 pages) doi:10.1115/1.3167614 History: Received July 01, 1983; Revised October 01, 1983; Online July 21, 2009


In a previous paper, the title problem was solved for a homogeneous power-law linearly viscoelastic half-plane. Such material has a constant Poisson’s ratio and a shear modulus with a power-law dependence on time. In this paper, the shear modulus is assumed also to have a power-law dependence on depth from the half-plane boundary. As in the earlier paper, only a quasi-static analysis is presented, that is, the enertial terms in the equations of motion are not retained and the indentor is assumed to slide with constant speed. The resulting boundary value problem is reduced to a generalized Abel integral equation. A simple closed-form solution is obtained from which all relevant physical parameters are easily computed.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In