0
RESEARCH PAPERS

Multiaxial Creep of 2618 Aluminum Under Proportional Loading Steps

[+] Author and Article Information
J.-L. Ding, W. N. Findley

Division of Engineering, Brown University, Providence, R.I. 02912

J. Appl. Mech 51(1), 133-140 (Mar 01, 1984) (8 pages) doi:10.1115/1.3167556 History: Received January 01, 1983; Revised July 01, 1983; Online July 21, 2009

Abstract

Creep data of 2618-T61 aluminum alloy under multistep multiaxial proportional loadings at 200°C (392°F) are reported. Two viscoplastic flow rules were developed using constant stress creep and creep recovery data. One was based on the accumulated strain (isotropic strain hardening), and the other on a tensorial state varible (kinematic hardening). Data were represented by two models: a nonrecoverable viscoplastic model, and a viscous-viscoelastic model in which the time-dependent strain was resolved into recoverable (viscoelastic) and nonrecoverable components. The modified superposition principle was used to predict the viscoelastic strain component under variable stress states. The experiments showed that the viscous-viscoelastic model with either isotropic strain hardening or kinematic hardening gave very good predictions of the material responses. Isotropic strain hardening was best in some step-down stress states. The viscoelastic component accounted for not only the recovery strain but also the transient creep strain upon reloadings and step-up loadings.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In