The Evolution of Computational Methods in Aerodynamics

[+] Author and Article Information
A. Jameson

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J. 08544

J. Appl. Mech 50(4b), 1052-1070 (Dec 01, 1983) (19 pages) doi:10.1115/1.3167188 History: Received June 01, 1983; Online July 21, 2009


This paper surveys the evolution of computational methods in aerodynamics. Improvements in high-speed electronic computers have made it feasible to attempt numerical calculations of progressively more complex mathematical models of aerodynamic flows. Numerical approximation methods for a hierarchy of models are examined in ascending order of complexity, ranging from the linearized potential flow equation to the Reynolds averaged Navier Stokes equations, with the inclusion of some previously unpublished material on implicit and multigrid methods for the Euler equations. It is concluded that the solution to the Euler equations for inviscid flow past a complete aircraft is a presently attainable objective, while the solution to the Reynolds averaged Navier Stokes equations is a possibility clearly visible on the horizon.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In