The Dynamic Stress Intensity Factor Due to Arbitrary Screw Dislocation Motion

[+] Author and Article Information
L. M. Brock

Department of Engineering Mechanics, University of Kentucky, Lexington, Ky. 40506

J. Appl. Mech 50(2), 383-389 (Jun 01, 1983) (7 pages) doi:10.1115/1.3167049 History: Received April 01, 1982; Revised October 01, 1982; Online July 21, 2009


The dynamic stress intensity factor for a stationary semi-infinite crack due to the motion of a screw dislocation is obtained analytically. The dislocation position, orientation, and speed are largely arbitrary. However, a dislocation traveling toward the crack surface is assumed to arrest upon arrival. It is found that discontinuities in speed and a nonsmooth path may cause discontinuities in the intensity factor and that dislocation arrest at any point causes the intensity factor to instantaneously assume a static value. Morever, explicit dependence on speed and orientation vanish when the dislocation moves directly toward or away from the crack edge. The results are applied to antiplane shear wave diffraction at the crack edge. For an incident step-stress plane wave, a stationary dislocation near the crack tip can either accelerate or delay attainment of a critical level of stress intensity, depending on the relative orientation of the crack, the dislocation, and the plane wave. However, if the incident wave also triggers dislocation motion, then the delaying effect is diminished and the acceleration is accentuated.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In