Effect of Shear and Rotary Inertia on Dynamic Fracture of a Beam or Plate in Pure Bending

[+] Author and Article Information
C. Levy, G. Herrmann

Division of Applied Mechanics, Department of Mechanical Engineering, Stanford University, Stanford, Calif. 94305

J. Appl. Mech 49(4), 773-778 (Dec 01, 1982) (6 pages) doi:10.1115/1.3162616 History: Received September 01, 1981; Revised March 01, 1982; Online July 21, 2009


The dynamic fracture response of a long beam of brittle material subjected to pure bending is studied. If the magnitude of the applied bending moment is increased quasi-statically to a critical value, a crack will propagate from the tensile side of the beam. As an extension of previous work, the effect of shear and of rotary inertia on the moment and induced axial load at the fracturing section is included in the present analysis. Thus an improved formulation is presented by means of which the crack length, crack-tip velocity, bending moment, and axial force at the fracture section are determined as functions of time after crack initiation. It is found that the rotary effect diminishes the axial force effect and retards total fracture time whereas the shear has an opposite effect. Thus by combining the two effects (to simulate to first order the Timoshenko beam) overall fracture is retarded and better agreement with experimental data is achieved. The results also apply for plane-strain fracture of a plate in pure bending provided the value of the elastic modulus is appropriately modified.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In