0
RESEARCH PAPERS

A Unified, Self-Consistent Theory for the Plastic-Creep Deformation of Metals

[+] Author and Article Information
G. J. Weng

Department of Mechanics and Materials Science, Rutgers University, New Brunswick, N.J. 08903

J. Appl. Mech 49(4), 728-734 (Dec 01, 1982) (7 pages) doi:10.1115/1.3162609 History: Received December 01, 1981; Revised May 01, 1982; Online July 21, 2009

Abstract

A unified, self-consistent scheme is formulated to determine the plastic-creep behavior of metals under combined stress. It is pointed out that such a deformation involves the transition from the inhomogeneity to transformation problem in the sense of Eshelby. The plastic deformation is studied by the Berveiller and Zaoui modification of Hill’s model. Following plastic deformation the structure of self-consistent relation for subsequent creep is analyzed and found to be independent of prior plastic strains. These self-consistent relations are used in conjunction with one set of unified constitutive equations for slip systems, in which the effect of prior plastic strains on the subsequent creep is considered. This unified, self-consistent scheme is applied to predict the plastic-creep strains of a 304 stainless steel. As compared to the experimental data, the self-consistent scheme is found to consistently provide reasonably accurate estimates for the total inelastic strains, while the predictions by the von Mises theory are seen to be less favorable.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In