Application of the Line-Spring Model to a Cylindrical Shell Containing a Circumferential or Axial Part-Through Crack

[+] Author and Article Information
F. Delale

Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pa.

F. Erdogan

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pa. 18015

J. Appl. Mech 49(1), 97-102 (Mar 01, 1982) (6 pages) doi:10.1115/1.3162077 History: Received May 01, 1981; Revised July 01, 1981; Online July 21, 2009


In this paper the line-spring model developed by Rice and Levy is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. It is assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and is subjected to a uniform membrane loading or a uniform bending moment away from the crack region. To formulate the shell problem, a Reissner type theory is used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that were found from the plane strain problem for a circular ring having a radial crack for the axial crack. Qualitatively the line-spring model gives the expected results in comparison with the elasticity solutions. The results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In