0
RESEARCH PAPERS

On Torsion and Transverse Flexure of Orthotropic Elastic Plates

[+] Author and Article Information
E. Reissner

Department of Applied Mechanics and Engineering Sciences, University of California, San Diego, La Jolla, Calif. 92093

J. Appl. Mech 47(4), 855-860 (Dec 01, 1980) (6 pages) doi:10.1115/1.3153802 History: Received November 01, 1979; Revised April 01, 1980; Online July 21, 2009

Abstract

The equations of transverse bending of shear-deformable plates are used for the derivation of a system of one-dimensional equations for beams with unsymmetrical cross section, with account for warping stiffness, in addition to bending, shearing, and twisting stiffness. Significant results of the analysis include the observation that the rate of change of differential bending moment is given by the difference between torque contribution due to plate twisting moments and torque contribution due to plate shear stress resultants; a formula for shear center location which generalizes a result by Griffith and Taylor so as to account for transverse shear deformability and end-section warping restraint; a second-order compatibility equation for the differential bending moment; a contracted boundary condition of support for unsymmetrical cross-section beam theory in place of an explicit consideration of the warping deformation boundary layer; and construction of a problem where the effect of the conditions of support of the beam is such as to give noncoincident shear center and twist center locations.

Copyright © 1980 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In