0
RESEARCH PAPERS

Fracture Related to a Dislocation Distribution

[+] Author and Article Information
C. Vilmann, T. Mura

Materials Research Center and Department of Civil Engineering, The Technological Institute, Northwestern University, Evanston, Ill. 60201

J. Appl. Mech 46(4), 817-820 (Dec 01, 1979) (4 pages) doi:10.1115/1.3424660 History: Received January 01, 1979; Revised May 01, 1979; Online July 12, 2010

Abstract

The plastic flow at the crack tip is characterized by a model compatible with slip line theory. From this model it is shown that a continuous distribution of dislocations may be derived. Then assuming that these dislocations are emitted from the crack tip and move along slip lines to their final position, the Peach-Koehler force is used to calculate the plastic work involved. Since the plastic zone size is dependent on crack length, two plastic effects are present upon propagation. Primarily the distribution of dislocations present moves along with the crack tip, secondarily new dislocations are emitted to fill the larger plastic zone. These effects yield plastic work which is dependent on both σ2 and σ4 , with σ being the applied stress. This dependancy yields a critical stress relationship different from that proposed by either Irwin or Orowan. It also leads to the determination of a subcritical flaw size, i.e., one which will never become unstable.

Copyright © 1979 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In