Eigenfrequencies of Continuous Plates With Arbitrary Number of Equal Spans

[+] Author and Article Information
Isaac Elishakoff, Alexander Sternberg

Department of Aeronautical Engineering, Technion—Israel Institute of Technology, Haifa, Israel

J. Appl. Mech 46(3), 656-662 (Sep 01, 1979) (7 pages) doi:10.1115/1.3424622 History: Received June 01, 1978; Revised January 01, 1979; Online July 12, 2010


An approximate analytical technique is developed for determination of the eigenfrequencies of rectangular isotropic plates continuous over rigid supports at regular intervals with arbitrary number of spans. All possible combinations of simple support and clamping at the edges are considered. The solution is given by the modified Bolotin method, which involves solution of two problems of the Voigt-Lévy type in conjunction with a postulated eigenfrequency/wave-number relationship. These auxiliary problems yield a pair of transcendental equations in the unknown wave numbers. The number of spans figures explicitly in one of the transcendental equations, so that numerical complexity does not increase with the number of spans. It is shown that the number of eigenfrequencies associated with a given pair of mode numbers equals that of spans. The essential advantage of the proposed method is the possibility of finding the eigenfrequencies for any prescribed pair of mode numbers. Moreover, for plates simply supported at two opposite edges and continuous over rigid supports perpendicular to those edges, the result is identical with the exact solution.

Copyright © 1979 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In