Analysis of Branched Cracks

[+] Author and Article Information
K. K. Lo

Division of Applied Sciences, Harvard University, Cambridge, Mass.

J. Appl. Mech 45(4), 797-802 (Dec 01, 1978) (6 pages) doi:10.1115/1.3424421 History: Received May 01, 1978; Revised July 01, 1978; Online July 12, 2010


This paper presents a method for solving a class of two-dimensional elastic branched crack problems. In contrast to other approaches in the literature, the integral equation presented here enables different branched crack problems to be solved in a unified manner. Muskhelishvili’s potential formulation is used to derive, by means of a Green’s function technique, a singular integral equation in complex form. The problems of the asymmetrically, symmetrically, and doubly symmetrically branched cracks are considered. The ratio of the length of the branched crack to that of the main one may be varied arbitrarily and the limit in which this ratio goes to zero is obtained analytically. Stress-intensity factors at the branched crack tip are computed numerically and the results, where possible, are compared to those in the literature. Disagreements in the literature are discussed and clarified with the aid of the present results.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In