0
RESEARCH PAPERS

Nonsteady-State Particle Flow Under Gravity—An Extension of the Stochastic Theory

[+] Author and Article Information
W. W. Mullins

Carnegie-Mellon University, Pittsburgh, Pa.

J. Appl. Mech 41(4), 867-872 (Dec 01, 1974) (6 pages) doi:10.1115/1.3423474 History: Received December 01, 1973; Revised June 01, 1974; Online July 12, 2010

Abstract

The steady-state (ss) stochastic theory of convergent, cohesionless particle flow under gravity toward an orifice in the floor of a semi-infinite bed, based on the statistics of random flight and assuming instantaneous propagation of flow disturbances throughout the bed, is extended to nonsteady-state flow and time lag effects. The new theory, of which the ss theory is a special case, assumes flow to be restricted to an expanding zone, surmounting the orifice (opened at t = 0), of particle density ρss , separated from the rest of the bed of the original particle density ρ0 = ρss + Δρ (Δρ > 0) by a boundary whose elements advance with a velocity vn = −(1/Δρ)Jn where Jn is the normal component of the particle flux on the inside of the boundary due to flow (assumed to be ss) within the zone. Detailed equations describing the flow zone boundary as a function of time and the flow within the zone are developed; the equations depend on two material parameters (Δρ/ρss , and α of ss theory) and on the quantity of material drained out. Corrections are derived for the analysis of the z2 and z3/2 plots of layer data previously made on the basis of the ss theory. A comparison of the new predictions with one piece of flow data shows the theory capable of accounting for lag effects and for details of the flow pattern in that case. Values of Δρ/ρss and α are deduced, the latter being the order of the particle size in conformity to the expectations of the statistical theory.

Copyright © 1974 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In