Floquet Theory and Newton’s Method

[+] Author and Article Information
G. A. Thurston

Department of Mechanical Sciences and Environmental Engineering, University of Denver, Denver, Colo.

J. Appl. Mech 40(4), 1091-1096 (Dec 01, 1973) (6 pages) doi:10.1115/1.3423131 History: Received July 01, 1972; Revised April 01, 1973; Online July 12, 2010


Application of Newton’s method to nonlinear vibration problems can lead to a sequence of nonhomogeneous ordinary differential equations with periodic coefficients. The form of the complementary solutions are known from Floquet theory. This paper suggests a method for avoiding “secular terms” that grow with time in the particular solution. The method consists of finding a single periodic solution of the complementary solutions and its adjoint. If the periodic solution exists, a frequency correction can be computed that eliminates secular terms. After the frequency correction, the rest of the particular solution is periodic and can be computed by the infinite determinant method or other numerical methods. In oversimplified terms, the procedure is to find the improved approximation to the period by variation of parameters and the next approximation to the amplitudes by undetermined coefficients which is a simpler computation than variation of parameters.

Copyright © 1973 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In