0
RESEARCH PAPERS

Scattering of a Plane Elastic Wave From Objects Near an Interface

[+] Author and Article Information
Stephen B. Bennett

Westinghouse Electric Corporation, Steam Turbine Division, Lester, Pa.

J. Appl. Mech 39(4), 1019-1026 (Dec 01, 1972) (8 pages) doi:10.1115/1.3422822 History: Received June 01, 1970; Revised February 01, 1972; Online July 12, 2010

Abstract

The displacement field generated by the reflection and refraction of plane (time harmonic) elastic waves by finite obstacles of arbitrary shape, in the neighborhood of a plane interface between two elastic media, is investigated. The technique employed allows a consistent formulation of the problem for both two and three dimensions, and is not limited either to boundary shapes which are level surfaces in appropriate coordinate systems, i.e., circular cylinders, spheres, etc., or to closed boundary curves or surfaces. The approach is due to Twersky, and has been applied to many problems of the scattering of electromagnetic waves. The method consists of expressing the net field due to all multiple scattering in terms of the field reflected from each boundary in isolation when subjected to an incident plane elastic wave. Thus the technique makes use of more elemental scattering problems whose solutions are extant. By way of illustration, a numerical solution to the scattering of a plane elastic wave by a rigid circular cylindrical obstacle adjacent to a plane free surface is considered.

Copyright © 1972 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In