0
RESEARCH PAPERS

Asymptotic Expansions of Guided Elastic Waves

[+] Author and Article Information
B. Rulf, B. Z. Robinson, P. Rosenau

Department of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

J. Appl. Mech 39(2), 378-384 (Jun 01, 1972) (7 pages) doi:10.1115/1.3422688 History: Received August 01, 1971; Revised January 01, 1972; Online July 12, 2010

Abstract

The problem of propagation of guided elastic waves near curved surfaces and in layers of nonconstant thickness is investigated. Rigorous solutions for such problems are not available, and a method is shown for the construction of high frequency asymptotic solutions for such problems in two dimensions. The method is applied to Love waves, which are SH-waves in an elastic layer, Rayleigh waves, which are elastic waves guided by a single free surface, and Lamb waves, which are SV-waves guided in a plate or layer with two free surfaces. The procedure shown breaks the second-order boundary-value problems which have to be solved into successions of simpler problems which can be solved numerically. Some numerical examples for Rayleigh waves are carried out in order to demonstrate the utility of our method. The method shown is useful for a large variety of guided wave problems, of which the ones we treat are just examples.

Copyright © 1972 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In