The Part-Through Surface Crack in an Elastic Plate

[+] Author and Article Information
J. R. Rice, N. Levy

Division of Engineering, Brown University, Providence, R. I.

J. Appl. Mech 39(1), 185-194 (Mar 01, 1972) (10 pages) doi:10.1115/1.3422609 History: Received October 08, 1970; Online July 12, 2010


An elastic analysis is presented for the tensile stretching and bending of a plate containing a surface crack penetrating part-through the thickness, Fig. 1. The treatment is approximate, in that the two-dimensional generalized plane stress and Kirchhoff-Poisson plate bending theories are employed, with the part-through cracked section represented as a continuous line spring. The spring has both stretching and bending resistance, its compliance coefficients being chosen to match those of an edge cracked strip in plane strain. The mathematical formulation reduces finally to two-coupled integral equations for the thickness averaged force and moment per unit length along the cracked section. These are solved numerically for the case of a semi-elliptical part-through crack, with results compared to a simple but approximate closed-form solution. Extensive results are given for the stress intensity factor at the midpoint of the part-through crack for both remote tensile and bending loads on the plate. These results indicate that the stress-intensity factor is substantially lower, in general, than for a similarly loaded strip in plane strain with a crack of the same depth.

Copyright © 1972 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In