A Numerical Computation of a Confined Rotating Flow

[+] Author and Article Information
Hsien-Ping Pao

Department of Space Science and Applied Physics, The Catholic University of America, Washington, D. C.

J. Appl. Mech 37(2), 480-487 (Jun 01, 1970) (8 pages) doi:10.1115/1.3408531 History: Received December 26, 1968; Revised September 16, 1969; Online April 06, 2010


A numerical investigation of a viscous incompressible fluid confined in a closed circular cylindrical container is made. The top and side wall are in rotation with a constant angular velocity, and the bottom is held fixed. A numerical scheme using the full Navier-Stokes equations is developed. For small or moderate Reynolds numbers (Re = ΩL2 /ν), the convergence of iteration is quite rapid. When the Reynolds number increases, the flow in the bottom boundary layer and the viscous core is intensified. An initial value problem is also investigated for Re = 1000 and 5000. The flow development of the bottom boundary layer and the viscous core is clearly exhibited. Some experimental investigation is also made. The numerical solution agrees very well with the analytic solution for small Reynolds numbers and with the experimental observation for moderate and high Reynolds numbers.

Copyright © 1970 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In