0
RESEARCH PAPERS

Shock Waves in Mathematical Models of the Aorta

[+] Author and Article Information
George Rudinger

Cornell Aeronautical Laboratory, Inc., Buffalo, N. Y.

J. Appl. Mech 37(1), 34-37 (Mar 01, 1970) (4 pages) doi:10.1115/1.3408485 History: Received March 03, 1969; Online July 12, 2010

Abstract

If the nonlinear equations for nonsteady blood flow are solved by the method of characteristics, shock discontinuities may develop as a result of omitting from the mathematical model some aspect of the system that becomes significant at rapid flow changes. As an illustration, the flow from the heart into the aorta at the beginning of systole is analyzed. An equation is derived which yields shock formation distances between a few centimeters and several meters depending on the elastic properties of the aorta. Since knowledge of the actual wave form would be useful for computer programming, a few exploratory experiments were performed with an unrestrained latex tube. They indicated wave transitions extending over several tube diameters, but maximum steepening of the wave has not yet been achieved.

Copyright © 1970 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In