0
RESEARCH PAPERS

Analytical Investigations of Incompressible Turbulent Swirling Flow in Stationary Ducts

[+] Author and Article Information
A. Rochino, Z. Lavan

Mechanical and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, Ill.

J. Appl. Mech 36(2), 151-158 (Jun 01, 1969) (8 pages) doi:10.1115/1.3564602 History: Received April 19, 1968; Revised November 26, 1968; Online September 14, 2011

Abstract

Turbulent swirling flows in stationary cylindrical ducts were investigated analytically using Taylor’s modified vorticity transport theory and von Karman’s similarity hypothesis extended to consider a three-dimensional fluctuating velocity field. The resulting similarity conditions were used to formulate the expression for eddy diffusivity in the entire flow field except in a small region near the pipe wall where a mixing-length expression analogous to that assumed by Prandtl for parallel flow in channels was used. The swirl equation was solved numerically using a constant that was obtained indirectly from an experiment by Taylor, and the analytical results were compared with two different sets of experimental measurements. In both cases, the agreement between experiment and analysis was satisfactory. Some discrepancies appeared when the flow field was predominantly irrotational or in solid-body rotation: This might have been expected since, for these situations, some of the similarity conditions were indeterminate or infinite.

Copyright © 1969 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In