0
RESEARCH PAPERS

Laminar Inward Flow of an Incompressible Fluid Between Rotating Disks, With Full Peripheral Admission

[+] Author and Article Information
K. E. Boyd

AiResearch Manufacturing Company, Phoenix, Ariz.

W. Rice

Arizona State University, Tempe, Ariz.

J. Appl. Mech 35(2), 229-237 (Jun 01, 1968) (9 pages) doi:10.1115/1.3601185 History: Received July 25, 1967; Revised November 24, 1967; Online September 14, 2011

Abstract

The laminar flow of an incompressible Newtonian fluid, radially inward between parallel co-rotating disks is considered. The through-flow is supported by an externally applied pressure difference between the outer periphery and a circular fluid exhaust hole at an inner radius. The fluid supplied at the outer periphery is considered with arbitrary velocity components, such that the tangential component may be greater or less than the disk peripheral velocity. A sufficiently complete problem statement is formulated from the Navier-Stokes’ equations. The problem has three parameters: a Reynolds number, a flow-rate parameter, and a peripheral tangential velocity component parameter. A numerical method of solution is detailed and typical numerical results are given illustrating the phenomena that occur in the inlet region for various inlet conditions. It is shown that the solution becomes the asymptotic solution given by previous investigators at interior radii following the inlet. Correspondence between the complete solution given herein and the earlier asymptotic solutions is established as dependent on corresponding values of Reynolds number and flow rate only. The results are discussed from the point of view of application of the solution in the development of multiple-disk turbines.

Copyright © 1968 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In