Interaction of a Ring-Reinforced Shell and a Fluid Medium

[+] Author and Article Information
Jerry W. Berglund, Jerome M. Klosner

Polytechnic Institute of Brooklyn, Brooklyn, N. Y.

J. Appl. Mech 35(1), 139-147 (Mar 01, 1968) (9 pages) doi:10.1115/1.3601127 History: Received July 14, 1967; Online September 14, 2011


This work is concerned with the transient dynamic response of a periodically ring-reinforced, infinitely long, circular cylindrical shell to a uniform pressure suddenly applied through the surrounding acoustic medium. The incident particle velocity is zero, and the rings are assumed to be slightly flexible. A classical theory of the Donnell type is used to analyze the shell while the fluid is described by the linear acoustic field equation. The solution is obtained by assuming a power series expansion in the ring stiffness parameter and utilizing a technique which reduces the transient dynamic problem to an equivalent steady-state formulation. Numerical results are presented for a steel shell immersed in salt water for different ring spacings. For the case of rigid rings, a cylindrical and plane wave approximation was also used to represent the fluid field. It is shown that the cylindrical wave approximation yields reasonably accurate results. Flexible ring results, although limited, indicate that undamped or nonradiating components of the shell vibration are activated.

Copyright © 1968 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In