0
RESEARCH PAPERS

On Magnetohydrodynamics of Rotating Fluids

[+] Author and Article Information
Ernst W. Schwiderski, Hans J. Lugt

U. S. Naval Weapons Laboratory, Dahlgren, Va.

J. Appl. Mech 34(3), 563-570 (Sep 01, 1967) (8 pages) doi:10.1115/1.3607744 History: Received April 11, 1966; Online September 14, 2011

Abstract

The influence of rather general electromagnetic forces acting upon steady rotating motions of conducting viscous incompressible fluids over a rotating disk is investigated by means of adjustable local boundary-layer approximations of first order. Numerical results for the most important motions of von Kármán and Bödewadt are displayed and discussed in full detail. The hypothesis of small variations of the imposed magnetic field assumed in other investigations is found to be justified provided the corresponding Hartmann number and magnetic Reynolds number are of sufficiently small magnitude. Considerable distortions of the rotating motions result from strong electromagnetic forces. When the strength of the imposed electromagnetic forces is increased, the secondary motions may change their stagnation character to wake character, and vice versa. This change may proceed through the development of one-cell and two-cell flows as intermediate stages. The spatial instability of wake-type flows can be decreased or increased depending on the strength and the direction of the applied electromagnetic forces. In addition to critical Reynolds numbers, critical Hartmann numbers and magnetic Reynolds numbers are shown to exist beyond which no simple boundary-layer-type motions are possible. The interpretation of the spatial instability of wake-type flows as a separation phenomenon is supported by the “teacup” experiment photographed.

Copyright © 1967 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In