Compound-Compressible Nozzle Flow

[+] Author and Article Information
A. Bernstein, C. Hevenor

Pratt & Whitney Aircraft, East Hartford, Conn.

W. H. Heiser

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass.

J. Appl. Mech 34(3), 548-554 (Sep 01, 1967) (7 pages) doi:10.1115/1.3607742 History: Received November 15, 1966; Online September 14, 2011


A one-dimensional theory based upon fundamental flow relationships is presented for analyzing the behavior of one or more gas streams flowing through a single nozzle. This compound-compressible flow theory shows that the behavior of each stream is influenced by the presence of the other streams. The theory also shows that the behavior of compound-compressible flow is predicted by determining how changing conditions at the nozzle exit plane affect conditions within the nozzle. It is found that, when choking of the compound-compressible flow nozzle occurs, an interesting phenomenon exists: The compound-compressible flow is shown to be choked at the nozzle throat, although the individual stream Mach numbers there are not equal to one. This phenomenon is verified by a wave analysis which shows that, when choking occurs, a pressure wave cannot be propagated upstream to the nozzle throat even though some of the individual streams have Mach numbers less than one. Algebraic methods based on this compound-compressible flow theory are used to demonstrate the usefulness of this approach in computing the behavior of compound-compressible flow nozzles. A comparison of the compound-compressible flow theory with three-dimensional computer calculations shows that the effects of streamline curvature on nozzle behavior can be disregarded for many practical nozzle configurations. Test results from a typical two-flow nozzle show excellent agreement with the predictions from the theory.

Copyright © 1967 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In