The Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-Space

[+] Author and Article Information
T. C. T. Ting

Materials Engineering, University of Illinois, Chicago, Ill.

J. Appl. Mech 33(4), 845-854 (Dec 01, 1966) (10 pages) doi:10.1115/1.3625192 History: Received September 07, 1965; Revised February 18, 1966; Online September 15, 2011


The Hertz problem for a rigid spherical indenter on a viscoelastic half-space was studied by Lee and Radok [1] in which the radius a(t) of the contact area is a monotonically increasing function of time t. Later, Hunter [2] studied the rebound of a rigid sphere on a viscoelastic half-space so that the contact radius a(t) increases monotonically to a maximum and then decreases to zero monotonically. The contact problem in which a(t) increases for the second time and decreases again does not seem to have been studied; nor has the contact problem in which a(t) is nonzero initially and decreases monotonically been studied. In this paper, a method is introduced so that the contact problem can be solved for arbitrary a(t). The rigid indenter is assumed to be smooth and axisymmetric but otherwise arbitrary. The viscoelastic solutions are expressed in terms of the associated elastic solutions. A means for measuring the viscoelastic Poisson’s ratio is suggested.

Copyright © 1966 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In