Lubrication of a Porous Bearing—Stokes’ Solution

[+] Author and Article Information
D. D. Joseph

Department of Aeronautics and Engineering Mechanics, University of Minnesota, Minneapolis, Minn.

L. N. Tao

Department of Mechanics, Illinois Institute of Technology, Chicago, Ill.

J. Appl. Mech 33(4), 753-760 (Dec 01, 1966) (8 pages) doi:10.1115/1.3625178 History: Received September 27, 1965; Revised February 18, 1966; Online September 15, 2011


Coupling of flows induced by the rotation of an infinite cylinder in an eccentric cylindrical hole in a fluid-saturated porous space is investigated in the context of a coupled boundary-value problem in which the Stokes flow outside porous regions and the Darcy flow inside porous regions are connected by continuity requirements on the pressure and normal component of velocity. The configuration is used to model the effects of a thick porous bearing. The solution simplifies considerably in the Reynolds limit of small clearance, and compact approximations for the pressure distribution and other relevant physical variables are derived. It is shown that transverse pressure gradients in the lubricant which are normally neglected in the Reynolds limit do increase, but not significantly, as a result of bearing flow. It follows that candidate Reynolds’ equations may ordinarily ignore effects of transverse pressure gradients in the lubricant even when the bearing is porous. A principal effect of the porous flow on the coupled motion is a diminution of pressure differences which would develop if all solids were impermeable. Corresponding changes in the shear stress resultant, which is neglected relative to the pressure resultant in the impermeable Reynolds limit, can become dominant because of the diminished pressures which attend porous flow. For large eccentricity ratios, the shear resultant is negative, and the load capacity may fall to zero and even change sign.

Copyright © 1966 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In