Response of a Submerged Cylindrical Shell to an Axially Propagating Step Wave

[+] Author and Article Information
M. J. Forrestal

Department of Civil Engineering, The Technological Institute, Evanston, Ill.

G. Herrmann

The Technological Institute, Evanston, Ill.

J. Appl. Mech 32(4), 788-792 (Dec 01, 1965) (5 pages) doi:10.1115/1.3627317 History: Received May 29, 1964; Revised January 18, 1965; Online September 15, 2011


An infinitely long, circular, cylindrical shell is submerged in an acoustic medium and subjected to a plane, axially propagating step wave. The fluid-shell interaction is approximated by neglecting fluid motions in the axial direction, thereby assuming that cylindrical waves radiate away from the shell independently of the axial coordinate. Rotatory inertia and transverse shear deformations are included in the shell equations of motion, and a steady-state solution is obtained by combining the independent variables, time and the axial coordinate, through a transformation that measures the shell response from the advancing wave front. Results from the steady-state solution for the case of steel shells submerged in water are presented using both the Timoshenko-type shell theory and the bending shell theory. It is shown that previous solutions, which assumed plane waves radiated away from the vibrating shell, overestimated the dumping effect of the fluid, and that the inclusion of transverse shear deformations and rotatory inertia have an effect on the response ahead of the wave front.

Copyright © 1965 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In