Thermomechanical Behavior of Viscoelastic Media With Variable Properties Subjected to Cyclic Loading

[+] Author and Article Information
R. A. Schapery

School of Aeronautics, Astronautics, and Engineering Sciences, Purdue University, Lafayette, Ind.

J. Appl. Mech 32(3), 611-619 (Sep 01, 1965) (9 pages) doi:10.1115/1.3627267 History: Received April 10, 1964; Online September 15, 2011


The interaction between heat and dynamic response of viscoelastic bodies with temperature-dependent properties is studied. First, equations governing the small deformation thermomechanical response to sinusoidal loading are shown to be equivalent to a set of two variational principles. Viscoelastic properties of a solid propellant are characterized and then used in numerical examples dealing with sinusoidal shear loading of slabs and cylinders. As the first problem, an approximate variational method is used to calculate one-dimensional transient and steady-state temperature distributions in a massless slab. An exact steady-state solution is obtained for the thermomechanical behavior of a slab with concentrated mass and is then used to deduce the solution for a similarly loaded cylinder. Finally, the influence of distributed mass in a cylinder is studied using a variational method. It is found that without inertia a large temperature rise may occur when the applied stress amplitude is above a certain critical value which depends on thermal and mechanical properties, geometry, and frequency. Moreover, the combination of temperature-dependent properties and inertia leads to temperature and displacement jump instabilities that are similar to those existing in a nonlinear spring-mass system with a spring that softens with increasing displacement.

Copyright © 1965 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In