Stress Distribution Near Internal Crack Tips for Longitudinal Shear Problems

[+] Author and Article Information
G. C. Sih

Lehigh University, Bethlehem, Pa.

J. Appl. Mech 32(1), 51-58 (Mar 01, 1965) (8 pages) doi:10.1115/1.3625783 History: Received November 19, 1963; Revised June 10, 1964; Online September 15, 2011


A method is developed for finding the stress distribution in a cracked body under longitudinal shear and applied to solve a number of problems. Stress solutions are obtained in closed form and discussed in connection with the Griffith-Irwin theory of fracture. The results indicate that current fracture-mechanics theories may be applied directly to longitudinal shear problems. More specifically, the character of the stress distribution near the vertex of a sector cylinder in shear is examined. The inverse half-power law of the stress singularity at a crack tip may be verified by taking a vertex angle of 2π. In addition, crack-tip, stress-intensity factors are defined and evaluated from a complex stress function in a manner similar to those previously given for extension and plate-bending problems. Results of such studies clarified the behavior of branched cracks and other crack systems of interest.

Copyright © 1965 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In