On the Existence of a Cycloidal Burmester Theory in Planar Kinematics

[+] Author and Article Information
George N. Sandor

Yale University, New Haven, Conn.

J. Appl. Mech 31(4), 694-699 (Dec 01, 1964) (6 pages) doi:10.1115/1.3629732 History: Received September 18, 1963; Online September 15, 2011


One of the basic theories of kinematic synthesis, namely, Burmester’s classical centerpoint-circlepoint theory, is shown to be one of several special cases of a broader, more general new theory, involving points of the moving plane whose several corresponding positions lie on cycloidal curves. These curves may be generated by “cycloidal cranks.” Such “cycloidpoints,” centers of their generating circles (“circlepoints”) and base circles (“centerpoints”) are proposed to be called “Burmester point trios” (BPT’s). In case of 6 prescribed arbitrary positions, such BPT’s appear to lie, respectively, on three higher plane curves proposed to be called “cycloidpoint,” “circlepoint” and “centerpoint curves,” or, collectively, “generalized Burmester curves.” In the case of hypocycloidal cranks with “Cardanic” proportions, the hypocycloids become ellipses. For 7 prescribed positions, the number of BPT’s is finite. Application to linkage synthesis for motion generation with prescribed order and timing is presented and cognate-motion generator linkages, based on multiple generation of cycloidal curves, are shown to exist. Analytical derivations are outlined for the equations of the “generalized Burmester curves,” and possible further specializations and generalizations are indicated.

Copyright © 1964 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In