0
RESEARCH PAPERS

On a Variational Theorem in Elasticity and Its Application to Shell Theory

[+] Author and Article Information
P. M. Naghdi

University of California, Berkeley, Calif.

J. Appl. Mech 31(4), 647-653 (Dec 01, 1964) (7 pages) doi:10.1115/1.3629726 History: Received January 30, 1964; Online September 15, 2011

Abstract

After stating a variational theorem which is a further generalization of known variational theorems and which has as its Euler equations all of the field equations and the boundary conditions of classical linear three-dimensional elasticity, the remainder of the paper deals with its application to shell theory. A new characterization of the basic system of field equations and the boundary conditions of the linear theory of elastic shells is derived which includes the effect of transverse shear deformation and involves only symmetric resultants and symmetric shell-strain measures. These results are of special significance in relation to those of a number of recent investigations in shell theory under the Kirchhoff-Love hypothesis in which the boundary-value problem of shell theory is recast in terms of symmetric (but not necessarily the same) variables.

Copyright © 1964 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In