Experimental Solution of Elastic-Plastic Plane-Stress Problems

[+] Author and Article Information
P. S. Theocaris

Laboratory for Testing Materials, Athens National Technical University, Athens, Greece

J. Appl. Mech 29(4), 735-743 (Dec 01, 1962) (9 pages) doi:10.1115/1.3640662 History: Received July 14, 1961; Online September 16, 2011


The paper presents an experimental method for the solution of the plane state of stress of an elastic-plastic, isotropic solid that obeys the Mises yield condition and the associated flow rule. The stress-strain law is an incremental type law, determined by the Prandtl-Reuss stress-strain relations. The method consists in determining the difference of principal strains in the plane of stress by using birefringent coatings cemented on the surface of the tested solid. A determination of relative retardation using polarized light at normal incidence, complemented by a determination in two oblique incidences at 45 deg along with the tracing of isoclinics, procures enough data for obtaining the principal strains all over the field. The calculation of the elastic and plastic components of strains is obtained in a step-by-step process of loading. It is assumed that during each step the Cartesian components of stress and strain remain constant. The stress increments and the stresses can be found thereafter by using the Prandtl-Reuss stress-strain relations and used for the evaluation of the components of strains and their increments in the next step. The method can be used with any material having any arbitrary stress-strain curve, provided that convenient formulas are established relating the stress and strain components and their increments at each point of the loading path. The method is applied to an example of contained plastic flow in a notched tensile bar of an elastic, perfectly plastic material under conditions of plane stress.

Copyright © 1962 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In