Thermal Stresses in an Elastic, Work-Hardening Sphere

[+] Author and Article Information
Chintsun Hwang

Commercial Systems, The National Cash Register Company, Hawthorne, Calif.

J. Appl. Mech 27(4), 629-634 (Dec 01, 1960) (6 pages) doi:10.1115/1.3644073 History: Received December 17, 1959; Online September 16, 2011


In this paper, a method is presented for obtaining the transient thermal-stress distribution and the residual stresses in a spherical body where the time-dependent temperature distribution is symmetrical with respect to the center of the sphere. The material is assumed to be elastoplastic, while in the plastic range it work-hardens isotropically. The von Mises yield condition is used. The thermal and mechanical properties of the material are assumed to be temperature independent. The problem is reduced to a single nonlinear differential equation which is solved numerically on the NCR 304 digital computer. Several sets of numerical data representing various degrees of work-hardening in the spherical bodies during a cooling process are presented.

Copyright © 1960 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In