On the Elastic Bending of Columns Due to Dynamic Axial Forces Including Effects of Axial Inertia

[+] Author and Article Information
Eugene Sevin

Division of Mechanical Engineering Research, Armour Research Foundation, Illinois Institute of Technology, Chicago, Ill.

J. Appl. Mech 27(1), 125-131 (Mar 01, 1960) (7 pages) doi:10.1115/1.3643886 History: Received December 15, 1958; Online September 16, 2011


This study is concerned with the influence of axial inertia upon the elastic bending motion of initially slightly curved columns acted on by time-dependent axial forces. The equations of motion include both axial inertia and nonlinear strain terms. Numerical solutions were obtained for a similar problem previously studied by Hoff [1] but in which axial-inertia effects were neglected; i.e., the problem of a simply supported column initially bent in the shape of a half sine wave and loaded by displacing one end axially at a constant rate. The range of solutions pertains to conventional structural compression members (slenderness ratios less than 150), and to minimum rates of loading compatible with elastic response of common engineering materials. This study suggests that axial-inertia effects are of secondary importance in so far as the gross elastic response of conventional structural columns is concerned.

Copyright © 1960 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In