Dynamic Stability of Poroelastic Columns

[+] Author and Article Information
G. Cederbaum

The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheeva 84105, Israel

J. Appl. Mech 67(2), 360-362 (Jul 30, 1999) (3 pages) doi:10.1115/1.1303983 History: Received June 01, 1998; Revised July 30, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Bolotin, V. V., 1964, The Dynamic Stability of Elastic Systems, Halden Day, San Francisco.
Timoshenko, S. P., and Gere, M. G., 1961, Theory of Elastic Stability, McGraw-Hill Kogakusha, LTD, Tokyo.
Evan-Iwanovski,  R. M., 1965, “On the Parametric Response of Structures,” Appl. Mech. Rev. V-I, 18, pp. 699–702.
Evan-Iwanovski, R. M., 1976, Resonant Oscillations in Mechanical Systems, Elsevier, Amsterdam.
Stevens,  K. K., 1966, “On the Parametric Excitation of a Viscoelastic Column,” AIAA J., 12, pp. 2111–2116.
Touati,  D., and Cederbaum,  G., 1994, “Dynamic Stability of Nonlinear Viscoelastic Plates,” Int. J. Solids Struct., 31, No. 17, pp. 2367–2376.
Biot,  M. A., 1941, “General Theory of Three Dimensional Consolidation,” J. Appl. Phys., 12, pp. 155–165.
Nowinski,  J. L., and Davis,  C. F., 1972, “The Flexure and Torsion of Bones Viewed as Anisotropic Poroelastic Bodies,” Int. J. Eng. Sci., 10, pp. 1063–1079.
Taber,  L. A., 1992, “A Theory for Transverse Deflection of Poroelastic Plates,” ASME J. Appl. Mech., 59, pp. 628–634.
Yang,  M., Taber,  L. A., and Clark,  E. B., 1994, “A Nonlinear Poroelastic Model for the Trabecular Embryonic Heart,” ASME J. Biomech. Eng., 116, pp. 213–223.
Zhang,  D., and Cowin,  S. C., 1994, “Oscillatory Bending of a Poroelastic Beam,” J. Mech. Phys. Solids, 42, pp. 1575–1599.
Li,  L. P., Schulgasser,  K., and Cederbaum,  G., 1995, “Theory of Poroelastic Beams With Axial Diffusion,” J. Mech. Phys. Solids, 43, No. 12, pp. 2023–2042.
Li,  L. P., Cederbaum,  G., and Schulgasser,  K., 1996, “Vibration of Poroelastic Beams With Axial Diffusion,” Eur. J. Mech., 15, No. 6, pp. 1077–1094.
Li,  L. P., Schulgasser,  K., and Cederbaum,  G., 1997, “Buckling of Poroelastic Columns With Axial Diffusion,” Int. J. Mech. Sci., 39, No. 4, pp. 409–415.
Bender, C. M., and Orszag, S. A., 1984, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Singapore.


Grahic Jump Location
Stability boundaries in a qualitative form



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In