Minorsky, N., 1962, Nonlinear Oscillations, Van Nostrand Reinhold, New York, p. 506.
Olsson,
M. G., 1976, “Why Does a Mass on a Spring Sometimes Misbehave?” Am. J. Phys., 44, No. 12, pp. 1211–1212.
Kane,
T. R., and Kahn,
M. E., 1968, “On a class of Two Degrees of Freedom Oscillations,” ASME J. Appl. Mech., Series E, 35, pp. 547–552.
Lai,
H. M., 1984, “On the Recurrence Phenomenon of a Resonant Spring Pendulum,” Am. J. Phys., 52, No. 3, pp. 219–223.
Anicin,
B. A., Davidovic,
D. M., and Babovic,
V. M., 1993, “On the Linear Theory of the Elastic Pendulum,” Eur. J. Phys., 14, pp. 132–135.
Ryland ,
H. G., and Meirovitch,
L., 1977, “Stability Boundaries of a Swinging Spring With Oscillating Support,” J. Sound Vib., 51, No. 4, pp. 547–560.
Nunez-Yepez,
N., Salas-Brito,
A. L., Vargas,
C. A., and Vincente,
L., 1990, “Onset of Chaos in an Extensible Pendulum,” Phys. Lett. A, 145, pp. 101–105.
Cuerno,
R., Ranada,
A. F., and Ruiz-Lorenzo,
J. J., 1992, “Deterministic Chaos in the Elastic Pendulum: A simple Laboratory for Nonlinear Dynamics,” Am. J. Phys., 60, No. 1, pp. 73–79.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillation, John Wiley and Sons, New York.
Beatty,
M. F., 1983, “Finite Amplitude Oscillations of a Simple Rubber Support System,” Arch. Ration. Mech. Anal., 83, No. 3, pp. 195–219.
Beatty,
M. F., and Bhattacharyya,
R., 1990, “Poynting Oscillations of a Rigid Disk Supported by a Neo-Hookean Rubber Shaft,” J. Elast., 24, pp. 135–186.
Bellman, R., 1969, Stability Theory of Differential Equations, Dover, New York.
Bhattacharyya,
R., 1995, “A Stability Theorem for Hill’s Equation for Engineering Applications,” ASME J. Vibr. Acoust., 117, pp. 380–381.
Zhou,
Z., 1993, “Coupled Shear-Torsional Motion of a Rubber Support System,” J. Elast., 30, pp. 123–189.
Cunningham, W. J., 1958, Introduction to Nonlinear Analysis, McGraw-Hill, New York.