0
TECHNICAL PAPERS

Vibration Characteristics of Conical Shell Panels With Three-Dimensional Flexibility

[+] Author and Article Information
K. M. Liew

Centre for Advanced Numerical Engineering Simulations, School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798

Z. C. Feng

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

J. Appl. Mech 67(2), 314-320 (Oct 21, 1999) (7 pages) doi:10.1115/1.1304911 History: Received April 04, 1998; Revised October 21, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Leissa, A. W., 1973, “Vibration of Shells,” NASA SP-288, U.S. Government Printing Office, Washington DC, reprinted by the Acoustical Society of America, 1993.
Librescu, L., 1975, Elastostatics and Kinematics of Anisotropic and Hetrogenerus Shell-Types Structures, Noordhoff, Leyden.
Liew,  K. M., Lim,  C. W., and Kitipornchai,  S., 1997, “Vibration of Shallow Shells: A Review With Bibliography,” ASME Appl. Mech. Rev., 50, pp. 431–444.
Love,  A. E. H., 1888, “Small Free Vibrations and Deformations of Thin Elastic Shells,” Philos. Trans. R. Soc. London, Ser. A, 179, pp. 491–549.
Reddy,  J. N., and Liu,  C. F., 1985, “A Higher-Order Shear Deformation Theory of Laminated Elastic Shells,” Int. J. Eng. Sci., 23, pp. 319–330.
Liew,  K. M., and Lim,  C. W., 1996, “A Higher-Order Theory for Vibration of Doubly Curved Shallow Shells,” ASME J. Appl. Mech., 63, pp. 587–593.
Hutchinson,  J. R., 1971, “Axisymmetric Vibration of a Free Finite-Length Rod,” J. Acoust. Soc. Am., 51, pp. 233–240.
Hutchinson,  J. R., 1980, “Vibrations of Solid Cylinders,” ASME J. Appl. Mech., 47, pp. 901–907.
Leissa,  A. W., and So,  J., 1995a, “Accurate Vibration Frequencies of Circular Cylinders From Three-Dimensional Analysis,” J. Acoust. Soc. Am., 98, pp. 2136–2141.
Leissa,  A. W., and So,  J., 1995b, “Three-Dimensional Vibrations of Truncated Hollow Cones,” J. Vib. Cont., 1, pp. 145–158.
Liew,  K. M., and Hung,  K. C., 1995, “Three-Dimensional Vibratory Characteristics of Solid Cylinders and Some Remarks on Simplified Beam Theories,” Int. J. Solids Struct., 32, pp. 3499–3513.
Liew,  K. M., Hung,  K. C., and Lim,  M. K., 1995, “Free Vibration Studies on Stress-Free Three-Dimensional Elastic Solids,” ASME J. Appl. Mech., 62, pp. 159–165.
Liew,  K. M., Hung,  K. C., and Lim,  M. K., 1995, “Vibration of Stress-Free Hollow Cylinders of Arbitrary Cross Section,” ASME J. Appl. Mech., 62, pp. 714–724.
So,  J., and Leissa,  A. W., 1997, “Free Vibrations of Thick Hollow Circular Cylinders from Three-Dimensional Analysis,” ASME J. Vibr. Acoust., 119, pp. 89–95.
Liew,  K. M., Hung,  K. C., and Lim,  M. K., 1995, “Vibratory Characteristics of Simply Supported Thick Skew Plates in Three-Dimensional Setting,” ASME J. Appl. Mech., 62, pp. 880–886.
Liew, K. M., Hung, K. C., and Lim, M. K., 1998, “Vibration of Thick Prismatic Structures With Three-Dimensional Flexibility,” ASME J. Appl. Mech., accepted for publication.
Srinivasan,  R. S., and Krishnan,  P. A., 1987, “Free Vibration of Conical Shell Panels,” J. Sound Vib., 117, pp. 153–160.
Cheung,  Y. K., Li,  W. Y., and Tham,  L. G., 1989, “Free Vibration Analysis of Singly Curved Shell by Spline Finite Strip Method,” J. Sound Vib., 128, pp. 411–422.

Figures

Grahic Jump Location
Geometry and dimensions of a truncated conical shell panel
Grahic Jump Location
Mode shapes and frequency parameters of a cantilevered conical shell panel (γv=30 deg,γo=30 deg,L/S=0.20 and L/h=8)
Grahic Jump Location
Mode shapes and frequency parameters of a fully clamped conical shell panel (γv=30 deg,γo=30 deg,L/S=0.20 and L/h=8)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In