0
Research Papers

Mechanics Design for Compatible Deformation of Fractal Serpentine Interconnects in High-Density Stretchable Electronics

[+] Author and Article Information
Yin Huang

School of Materials Science and Engineering,
Southwest Jiaotong University,
Chengdu, Sichuan 610031, China

Zhuangzhuang Mu, Peng Feng

Applied Mechanics and Structure Safety Key
Laboratory of Sichuan Province,
Chengdu, Sichuan 610031, China;
School of Mechanics and Engineering,
Southwest Jiaotong University,
Chengdu, Sichuan 610031, China

Jianghong Yuan

Applied Mechanics and Structure Safety Key
Laboratory of Sichuan Province,
Chengdu, Sichuan 610031, China;
School of Mechanics and Engineering,
Southwest Jiaotong University,
Chengdu, Sichuan 610031, China
e-mail: jianghong_yuan@swjtu.edu.cn

1Corresponding author.

Manuscript received November 17, 2018; final manuscript received December 9, 2018; published online January 11, 2019. Editor: Yonggang Huang.

J. Appl. Mech 86(3), 031011 (Jan 11, 2019) (6 pages) Paper No: JAM-18-1652; doi: 10.1115/1.4042290 History: Received November 17, 2018; Revised December 09, 2018

Inorganic stretchable electronics based on the island-bridge layout have attracted great attention in recent years due to their excellent electrical performance under the extreme condition of large deformations. During the mechanics design of interconnects in such devices, the major task is not only to maximize the elastic stretchability of device but also to smoothen the whole deformation process of interconnects. In this work, a novel design strategy is proposed for free-standing fractal serpentine interconnects to improve their elastic performance comprehensively without reducing the areal coverage of functional/active components of device. By modifying the classical design slightly, the new strategy can achieve a larger elastic stretchability, a smaller maximum out-of-plane displacement, and most strikingly, a smoother post-buckling deformation. This study will provide helpful guidance to the mechanics design of stretchable electronics with free-standing interconnects.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Rogers, J. A. , Someya, T. , and Huang, Y. G. , 2010, “ Materials and Mechanics for Stretchable Electronics,” Science, 327(5973), pp. 1603–1607. [CrossRef] [PubMed]
Sun, Y. G. , and Rogers, J. A. , 2007, “ Inorganic Semiconductors for Flexible Electronics,” Adv. Mater., 19(15), pp. 1897–1916. [CrossRef]
Zhang, Y. H. , Huang, Y. G. , and Rogers, J. A. , 2015, “ Mechanics of Stretchable Batteries and Supercapacitors,” Curr. Opin. Solid State Mater. Sci., 19(3), pp. 190–199. [CrossRef]
Ma, Y. J. , Feng, X. , Rogers, J. A. , Huang, Y. G. , and Zhang, Y. H. , 2017, “ Design and Application of ‘J-Shaped’ Stress-Strain Behavior in Stretchable Electronics: A Review,” Lab Chip, 17(10), pp. 1689–1704. [CrossRef] [PubMed]
Li, R. , Li, M. , Su, Y. W. , Song, J. Z. , and Ni, X. Q. , 2013, “ An Analytical Mechanics Model for the Island-Bridge Structure of Stretchable Electronics,” Soft Matter, 9(35), pp. 8476–8482. [CrossRef]
Kim, D. H. , Song, J. Z. , Choi, W. M. , Kim, H. S. , Kim, R. H. , Liu, Z. J. , Huang, Y. G. , Hwang, K. C. , Zhang, Y. W. , and Rogers, J. A. , 2008, “ Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations,” Proc. Natl. Acad. Sci. U. S. A., 105(48), pp. 18675–18680. [CrossRef] [PubMed]
Xu, S. , Zhang, Y. H. , Cho, J. , Lee, J. , Huang, X. , Jia, L. , Fan, J. A. , Su, Y. W. , Su, J. , Zhang, H. G. , Cheng, H. Y. , Lu, B. W. , Yu, C. J. , Chuang, C. , Kim, T. I. , Song, T. , Shigeta, K. , Kang, S. , Dagdeviren, C. , Petrov, I. , Braun, P. V. , Huang, Y. G. , Paik, U. , and Rogers, J. A. , 2013, “ Stretchable Batteries With Self-Similar Serpentine Interconnects and Integrated Wireless Recharging Systems,” Nat. Commun., 4, p. 1543. [CrossRef] [PubMed]
Shafqat, S. , Hoefnagels, J. P. M. , Savov, A. , Joshi, S. , Dekker, R. , and Geers, M. G. D. , 2017, “ Ultra-Stretchable Interconnects for High-Density Stretchable Electronics,” Micromachines, 8(9), p. 277. [CrossRef]
Zhang, Y. H. , Fu, H. R. , Xu, S. , Fan, J. A. , Hwang, K. C. , Jiang, J. Q. , Rogers, J. A. , and Huang, Y. G. , 2014, “ A Hierarchical Computational Model for Stretchable Interconnects With Fractal-Inspired Designs,” J. Mech. Phys. Solids, 72, pp. 115–130. [CrossRef]
Shi, X. T. , Xu, R. X. , Li, Y. H. , Zhang, Y. H. , Ren, Z. G. , Gu, J. F. , Rogers, J. A. , and Huang, Y. G. , 2014, “ Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate,” ASME J. Appl. Mech., 81(12), p. 124502. [CrossRef]
Pan, T. S. , Pharr, M. , Ma, Y. J. , Ning, R. , Yan, Z. , Xu, R. X. , Feng, X. , Huang, Y. G. , and Rogers, J. A. , 2017, “ Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics,” Adv. Funct. Mater., 27(37), p. 1702589. [CrossRef]
Zhang, P. , and Parnell, W. J. , 2017, “ Band Gap Formation and Tunability in Stretchable Serpentine Interconnects,” ASME J. Appl. Mech., 84(9), p. 091007. [CrossRef]
Yang, S. X. , Qiao, S. T. , and Lu, N. S. , 2017, “ Elasticity Solutions to Nonbuckling Serpentine Ribbons,” ASME J. Appl. Mech., 84(2), p. 021004. [CrossRef]
Fan, Z. C. , Zhang, Y. H. , Ma, Q. , Zhang, F. , Fu, H. R. , Hwang, K. C. , and Huang, Y. G. , 2016, “ A Finite Deformation Model of Planar Serpentine Interconnects for Stretchable Electronics,” Int. J. Solids Struct., 91, pp. 46–54. [CrossRef] [PubMed]
Xu, S. , Zhang, Y. H. , Jia, L. , Mathewson, K. E. , Jang, K. I. , Kim, J. , Fu, H. R. , Huang, X. , Chava, P. , Wang, R. H. , Bhole, S. , Wang, L. Z. , Na, Y. J. , Guan, Y. , Flavin, M. , Han, Z. S. , Huang, Y. G. , and Rogers, J. A. , 2014, “ Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin,” Science, 344(6179), pp. 70–74. [CrossRef] [PubMed]
Liu, Z. J. , Cheng, H. Y. , and Wu, J. , 2014, “ Mechanics of Solar Module on Structured Substrates,” ASME J. Appl. Mech., 81(6), p. 064502. [CrossRef]
Sosin, S. , Zoumpoulidis, T. , Bartek, M. , Wang, L. , Dekker, R. , Jansen, K. M. B. , and Ernst, L. J. , 2008, “ Free-Standing, Parylene-Sealed Copper Interconnect for Stretchable Silicon Electronics,” 58th Electronic Components and Technology Conference, Orlando, FL, May 27–30, pp. 1339–1345.
Fan, J. A. , Yeo, W. H. , Su, Y. W. , Hattori, Y. , Lee, W. , Jung, S. Y. , Zhang, Y. H. , Liu, Z. J. , Cheng, H. Y. , Falgout, L. , Bajema, M. , Coleman, T. , Gregoire, D. , Larsen, R. J. , Huang, Y. G. , and Rogers, J. A. , 2014, “ Fractal Design Concepts for Stretchable Electronics,” Nat. Commun., 5, p. 3266. [CrossRef] [PubMed]
Ma, Q. , and Zhang, Y. H. , 2016, “ Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics,” ASME J. Appl. Mech., 83(11), p. 111008. [CrossRef]
Dong, W. T. , Zhu, C. , Ye, D. , and Huang, Y. A. , 2017, “ Optimal Design of Self-Similar Serpentine Interconnects Embedded in Stretchable Electronics,” Appl. Phys. A: Mater. Sci. Process., 123(6), p. 428. [CrossRef]
Fu, H. R. , Xu, S. , Xu, R. X. , Jiang, J. Q. , Zhang, Y. H. , Rogers, J. A. , and Huang, Y. G. , 2015, “ Lateral Buckling and Mechanical Stretchability of Fractal Interconnects Partially Bonded Onto an Elastomeric Substrate,” Appl. Phys. Lett., 106(9), p. 091902. [CrossRef]
Zhang, Y. H. , Xu, S. , Fu, H. R. , Lee, J. , Su, J. , Hwang, K. C. , Rogers, J. A. , and Huang, Y. G. , 2013, “ Buckling in Serpentine Microstructures and Applications in Elastomer-Supported Ultra-Stretchable Electronics With High Areal Coverage,” Soft Matter, 9(33), pp. 8062–8070. [CrossRef] [PubMed]
Chen, C. , Tao, W. M. , Su, Y. W. , Wu, J. , and Song, J. Z. , 2013, “ Lateral Buckling of Interconnects in a Noncoplanar Mesh Design for Stretchable Electronics,” ASME J. Appl. Mech., 80(4), p. 041031. [CrossRef]
Fan, Z. C. , Wu, J. , Ma, Q. , Liu, Y. , Su, Y. W. , and Hwang, K. C. , 2017, “ Post-Buckling Analysis of Curved Beams,” ASME J. Appl. Mech., 84(3), p. 031007. [CrossRef]
Wang, A. , Avila, R. , and Ma, Y. J. , 2017, “ Mechanics Design for Buckling of Thin Ribbons on an Elastomeric Substrate Without Material Failure,” ASME J. Appl. Mech., 84(9), p. 094501. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

The island-bridge model widely used in the inorganic stretchable electronics. Each island is composed of rigid functional/active components, and each “bridge” is a second-order fractal serpentine interconnect composed of a series of first-order elements with a relatively small length scale.

Grahic Jump Location
Fig. 2

The second-order fractal serpentine interconnect with antisymmetric geometry based on (a) the classical design, and (b) the present new design obtained by slightly extending first-order elements in the middle branch of the second-order structure into the available blank space

Grahic Jump Location
Fig. 3

Curves of δc versus η2 for several discrete values of m under the fixed value of η1=3. Here, δc is the extending degree of first-order elements in the middle branch of the second-order structure for the critical transition from the symmetric to antisymmetric buckling mode, and η2 is the height/spacing aspect ratio of the second-order structure well defined in the classical design.

Grahic Jump Location
Fig. 4

The first-order out-of-plane buckling mode under the displacement-controlled tensile loadings acting at the two end-points of the interconnect: (a) symmetric mode in the classical design and (b) antisymmetric mode in the present new design obtained by the extending operation. Here, η1=3, η2=6, m=20, and δ=0.2.

Grahic Jump Location
Fig. 5

Curves of εstretchability versus δ under the condition of η1=3 for (a) several discrete values of η2 with a fixed m, and (b) several different values of m with a fixed η2. Here, εstretchability=λstretchability−1, with λstretchability defined as the ratio of the distance between the two end-points of the interconnect before yielding to the distance before loading, and δ is the extending degree of first-order elements in the middle branch of the second-order structure.

Grahic Jump Location
Fig. 6

Curves of u3max versus δ under the condition of η1=3 for (a) several discrete values of η2 with a fixed m and (b) several different values of m with a fixed η2. Here, u3max is the maximum out-of-plane displacement (in the sense of absolute values) of the interconnect during the whole deformation process, and δ is the extending degree of first-order elements in the middle branch of the second-order structure.

Grahic Jump Location
Fig. 7

The post-buckling deformation of the interconnect based on (a) the classical design and (b) the present new design, at the fixed strain level ε=175% with η1=3, η2=6, m=20, and δ=0.2. Here, the unit of displacements is μm.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In