0
Technical Brief

Irregular Hexagonal Cellular Substrate for Stretchable Electronics

[+] Author and Article Information
Feng Zhu

School of Logistics Engineering,
Wuhan University of Technology,
Wuhan 430063, China;
Center for Bio-Integrated Electronics,
Departments of Civil and Environmental Engineering,
Mechanical Engineering, and Materials
Science and Engineering,
Northwestern University,
Evanston, IL 60208

Hanbin Xiao

School of Logistics Engineering,
Wuhan University of Technology,
Wuhan 430063, China

Haibo Li

Center for Bio-Integrated Electronics,
Departments of Civil and Environmental Engineering,
Mechanical Engineering, and Materials
Science and Engineering,
Northwestern University,
Evanston, IL 60208;
School of Naval Architecture,
Ocean and Civil Engineering,
State Key Laboratory of Ocean Engineering,
Shanghai Jiaotong University,
Shanghai 200240, China

Yonggang Huang

Center for Bio-Integrated Electronics,
Departments of Civil and Environmental Engineering,
Mechanical Engineering, and Materials
Science and Engineering,
Northwestern University,
Evanston, IL 60208

Yinji Ma

Department of Engineering Mechanics,
Center for Flexible Electronics Technology,
Tsinghua University,
Beijing 100084, China
e-mail: mayinji@tsinghua.edu.cn

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received November 3, 2018; final manuscript received December 12, 2018; published online January 11, 2019. Assoc. Editor: Pradeep Sharma.

J. Appl. Mech 86(3), 034501 (Jan 11, 2019) (5 pages) Paper No: JAM-18-1620; doi: 10.1115/1.4042288 History: Received November 03, 2018; Revised December 12, 2018

The existing regular hexagonal cellular substrate for stretchable electronics minimizes the disruptions to the natural diffusive or convective flow of bio-fluids. Its anisotropy is insignificant, which is not ideal for mounting on skins that involve directional stretching. This paper proposes an irregular hexagonal cellular substrate with large anisotropy to minimize the constraints on the natural motion of the skin, and establishes an analytic model to study its stress–strain relation under finite stretching.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kim, H. J. , Thukral, A. , and Yu, C. J. , 2018, “ Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor,” ACS Appl. Mater. Interfaces, 10(5), pp. 5000–5006. [CrossRef] [PubMed]
Tao, L. Q. , Tian, H. , Liu, Y. , Ju, Z. Y. , Pang, Y. , Chen, Y. Q. , Wang, D. Y. , Tian, X. G. , Yan, J. C. , Deng, N. Q. , Yang, Y. , and Ren, T. L. , 2017, “ An Intelligent Artificial Throat With Sound-Sensing Ability Based on Laser Induced Graphene,” Nat. Commun., 8, p. 14579. [CrossRef] [PubMed]
Kim, Y. , Chortos, A. , Xu, W. T. , Liu, Y. X. , Oh, J. Y. , Son, D. , Kang, J. , Foudeh, A. M. , Zhu, C. X. , Lee, Y. , Niu, S. M. , Liu, J. , Pfattner, R. , Bao, Z. N. , and Lee, T. W. , 2018, “ A Bioinspired Flexible Organic Artificial Afferent Nerve,” Science, 360(6392), pp. 998–1003. [CrossRef] [PubMed]
Khang, D. Y. , Jiang, H. Q. , Huang, Y. , and Rogers, J. A. , 2006, “ A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates,” Science, 311(5758), pp. 208–212. [CrossRef] [PubMed]
Avila, R. , and Xue, Y. , 2017, “ Torsional Buckling by Joining Prestrained and Unstrained Elastomeric Strips With Application as Bilinear Elastic Spring,” ASME J. Appl. Mech., 84(10), p. 104502. [CrossRef]
Zhang, P. , and Parnell, W. , 2017, “ Band Gap Formation and Tunability in Stretchable Serpentine Interconnects,” ASME J. Appl. Mech., 84(9), p. 091007. [CrossRef]
Zhang, Y. H. , Huang, Y. G. , and Rogers, J. A. , 2015, “ Mechanics of Stretchable Batteries and Supercapacitors,” Curr. Opin. Solid State Mater. Sci., 19(3), pp. 190–199. [CrossRef]
Wang, A. , Avila, R. , and Ma, Y. , 2017, “ Mechanics Design for Buckling of Thin Ribbons on an Elastomeric Substrate Without Material Failure,” ASME J. Appl. Mech., 84(9), p. 094501. [CrossRef]
Zhang, M. Y. , Liu, H. , Cao, P. , Chen, B. , Hu, J. Q. , Chen, Y. L. , Pan, B. , Fan, J. A. , Li, R. , Zhang, L. J. , and Su, Y. W. , 2017, “ Strain-Limiting Substrates Based on Nonbuckling, Prestrain-Free Mechanics for Robust Stretchable Electronics,” ASME J. Appl. Mech., 84(12), p. 121010.
Ma, Y. , Choi, J. , Hourlier-Fargette, A. , Xue, Y. , Chung, H. , Lee, J. , Wang, X. , Xie, Z. , Kang, D. , Wang, H. , Han, S. , Kang, S. , Kang, Y. , Yu, X. , Slepian, M. , Raj, M. , Model, J. , Feng, X. , Ghaffari, R. , Rogers, J. , and Huang, Y. , 2018, “ Relation Between Blood Pressure and Pulse Wave Velocity for Human Arteries,” Proc. Natl. Acad. Sci. U.S.A., 115(44), pp. 11144–11149.
Yang, S. X. , Qiao, S. T. , and Lu, N. S. , 2017, “ Elasticity Solutions to Nonbuckling Serpentine Ribbons,” ASME J. Appl. Mech., 84(2), p. 021004.
Kim, D. H. , Lu, N. S. , Ma, R. , Kim, Y. S. , Kim, R. H. , Wang, S. D. , Wu, J. , Won, S. M. , Tao, H. , Islam, A. , Yu, K. J. , Kim, T. I. , Chowdhury, R. , Ying, M. , Xu, L. Z. , Li, M. , Chung, H. J. , Keum, H. , McCormick, M. , Liu, P. , Zhang, Y. W. , Omenetto, F. G. , Huang, Y. G. , Coleman, T. , and Rogers, J. A. , 2011, “ Epidermal Electronics,” Science, 333(6044), pp. 838–843. [CrossRef] [PubMed]
Ameri, S. K. , Ho, R. , Jang, H. W. , Tao, L. , Wang, Y. H. , Wang, L. , Schnyer, D. M. , Akinwande, D. , and Lu, N. S. , 2017, “ Graphene Electronic Tattoo Sensors,” ACS Nano, 11(8), pp. 7634–7641. [CrossRef] [PubMed]
Li, Y. H. , Zhang, J. P. , Xing, Y. F. , and Song, J. Z. , 2017, “ Thermomechanical Analysis of Epidermal Electronic Devices Integrated With Human Skin,” ASME J. Appl. Mech., 84(11), p. 111004.
Ko, H. C. , Stoykovich, M. P. , Song, J. Z. , Malyarchuk, V. , Choi, W. M. , Yu, C. J. , Geddes, J. B. , Xiao, J. L. , Wang, S. D. , Huang, Y. G. , and Rogers, J. A. , 2008, “ A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, 454(7205), pp. 748–753. [CrossRef] [PubMed]
Xu, L. Z. , Gutbrod, S. R. , Ma, Y. J. , Petrossians, A. , Liu, Y. H. , Webb, R. C. , Fan, J. A. , Yang, Z. J. , Xu, R. X. , Whalen, J. J. , Weiland, J. D. , Huang, Y. G. , Efimov, I. R. , and Rogers, J. A. , 2015, “ Materials and Fractal Designs for 3D Multifunctional Integumentary Membranes With Capabilities in Cardiac Electrotherapy,” Adv. Mater., 27(10), pp. 1731–1737. [CrossRef] [PubMed]
Kang, S. K. , Murphy, R. K. J. , Hwang, S. W. , Lee, S. M. , Harburg, D. V. , Krueger, N. A. , Shin, J. H. , Gamble, P. , Cheng, H. Y. , Yu, S. , Liu, Z. J. , McCall, J. G. , Stephen, M. , Ying, H. Z. , Kim, J. , Park, G. , Webb, R. C. , Lee, C. H. , Chung, S. J. , Wie, D. S. , Gujar, A. D. , Vemulapalli, B. , Kim, A. H. , Lee, K. M. , Cheng, J. J. , Huang, Y. G. , Lee, S. H. , Braun, P. V. , Ray, W. Z. , and Rogers, J. A. , 2016, “ Bioresorbable Silicon Electronic Sensors for the Brain,” Nature, 530(7588), pp. 71–76. [CrossRef] [PubMed]
Lee, Y. K. , Jang, K. I. , Ma, Y. J. , Koh, A. , Chen, H. , Jung, H. N. , Kim, Y. , Kwak, J. W. , Wang, L. , Xue, Y. G. , Yang, Y. Y. , Tian, W. L. , Jiang, Y. , Zhang, Y. H. , Feng, X. , Huang, Y. G. , and Rogers, J. A. , 2017, “ Chemical Sensing Systems That Utilize Soft Electronics on Thin Elastomeric Substrates With Open Cellular Designs,” Adv. Funct. Mater., 27(9), p. 1605476. [CrossRef]
Chen, H. , Zhu, F. , Jang, K. I. , Feng, X. , Rogers, J. A. , Zhang, Y. H. , Huang, Y. G. , and Ma, Y. J. , 2018, “ The Equivalent Medium of Cellular Substrate Under Large Stretching, With Applications to Stretchable Electronics,” J. Mech. Phys. Solids, 120, pp. 199–207. [CrossRef] [PubMed]
Zhu, F. , Xiao, H. , Xue, Y. , Feng, X. , Huang, Y. , and Ma, Y. , 2018, “ Anisotropic Mechanics of Cellular Substrate Under Finite Deformation,” ASME J. Appl. Mech., 85(7), p. 071007. [CrossRef]
Kothari, K. , Hu, Y. H. , Gupta, S. , and Elbanna, A. , 2018, “ Mechanical Response of Two-Dimensional Polymer Networks: Role of Topology, Rate Dependence, and Damage Accumulation,” ASME J. Appl. Mech., 85(3), p. 031008.
Petrikovsky, B. M. , Kaplan, G. , and Holsten, N. , 2003, “ Eyelid Movements in Normal Human Fetuses,” J. Clin. Ultrasound, 31(6), pp. 299–301. [CrossRef] [PubMed]
Gibson, L. J. , and Ashby, M. F. , 1997, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK.
Gibson, L. J. , Ashby, M. F. , and Schajer, G. S. , 1982, “ The Mechanics of Two-Dimensional Cellular Materials,” Proc. R. Soc. London, Ser. A, 382(1782), pp. 25–42. [CrossRef]
Wang, S. D. , Li, M. , Wu, J. , Kim, D. H. , Lu, N. S. , Su, Y. W. , Kang, Z. , Huang, Y. G. , and Rogers, J. A. , 2012, “ Mechanics of Epidermal Electronics,” ASME J. Appl. Mech., 79(3), p. 031022.
Lee, C. H. , Ma, Y. J. , Jang, K. I. , Banks, A. , Pan, T. , Feng, X. , Kim, J. S. , Kang, D. , Raj, M. S. , McGrane, B. L. , Morey, B. , Wang, X. Y. , Ghaffari, R. , Huang, Y. G. , and Rogers, J. A. , 2015, “ Soft Core/Shell Packages for Stretchable Electronics,” Adv. Funct. Mater., 25(24), pp. 3698–3704. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Schematic illustration of the irregular hexagonal cellular substrate; (b) mechanics model of a basic unit; (c) mechanics model of an inclined cell wall

Grahic Jump Location
Fig. 2

(a) Normalized nominal stress (T̂) versus the engineering strain (ε) of the equivalent medium for the cellular substrate, obtained by FEA for stretching along the x- and y-directions at different angles θ = 40 deg, 120 deg, and 160 deg, respectively. (b) Schematic illustrations of the cellular substrates at different angles θ = 40 deg, 120 deg, and 160 deg, respectively.

Grahic Jump Location
Fig. 3

Normalized equivalent nominal stress (T̂) versus equivalent engineering strain (ε) of the equivalent medium for the irregular hexagonal cellular substrate, obtained by FEA and analytic models, for (a) fixed porosity ϕ = 80% and different angles θ = 40 deg, 60 deg, 80 deg, 100 deg, 120 deg, and 140 deg, and (b) fixed angle θ = 80 deg and different porosities ϕ = 80%, 85%, 90%, and 95%

Grahic Jump Location
Fig. 4

(a) Regular (θ = 120 deg) and (b) irregular (θ = 80 deg) hexagonal cellular polydimethylsiloxane (PDMS) with porosity ϕ = 80% bonded to the skin. ((c)–(f)) Distributions of interfacial shear stress between PDMS (0.3-mm thick, elastic modulus 500 kPa, outer contour 3.4 mm×3.4 mm) and skin (1-mm thick, elastic modulus 130 kPa) for ((c) and (e)) regular hexagonal cellular PDMS (porosity ϕ = 80%, angle between the cellular walls θ = 120 deg and cell size l =0.3 mm) and ((d) and (f)) irregular hexagonal cellular PDMS (porosity ϕ = 80%, angle θ = 80 deg and cell size l =0.3 mm).

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In