0
Research Papers

Soft Freestanding Planar Artificial Muscle Based on Dielectric Elastomer Actuator

[+] Author and Article Information
Lei Qin

Department of Mechanical Engineering,
National University of Singapore,
9 Engineering Drive 1,
Singapore 117575
e-mail: a0078077@u.nus.edu

Jiawei Cao

Department of Mechanical Engineering,
National University of Singapore,
9 Engineering Drive 1,
Singapore 117575
e-mail: a0132548@u.nus.edu

Yucheng Tang

School of Mechanical Engineering,
Nanjing University of Science and Technology,
Nanjing 210094, China
e-mail: tang_yucheng@yahoo.com

Jian Zhu

Department of Mechanical Engineering,
National University of Singapore,
9 Engineering Drive 1,
Singapore 117575
e-mail: mpezhuj@nus.edu.sg

1Corresponding author.

Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received December 8, 2017; final manuscript received February 3, 2018; published online March 2, 2018. Assoc. Editor: Junlan Wang.

J. Appl. Mech 85(5), 051001 (Mar 02, 2018) (8 pages) Paper No: JAM-17-1673; doi: 10.1115/1.4039289 History: Received December 08, 2017; Revised February 03, 2018

Dielectric elastomer actuators (DEAs) exhibit interesting muscle-like attributes including large voltage-induced deformation and high energy density, thus can function as artificial muscles for soft robots/devices. This paper focuses on soft planar DEAs, which have extensive applications such as artificial muscles for jaw movement, stretchers for cell mechanotransduction, and vibration shakers for tactile feedback, etc. Specifically, we develop a soft planar DEA, in which compression springs are employed to make the entire structure freestanding. This soft freestanding actuator can achieve both linear actuation and turning without increasing the size, weight, or structural complexity, which makes the actuator suitable for driving a soft crawling robot. Furthermore, its simple structure and homogeneous deformation allow for analytic modeling, which can be used to interpret the large voltage-induced deformation and interesting mechanics phenomenon (i.e., wrinkling and electromechanical instability). A preliminary demonstration showcases that this soft planar actuator can be employed as an artificial muscle to drive a soft crawling robot.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Rus, D. , and Tolley, M. T. , 2015, “ Design, Fabrication and Control of Soft Robots,” Nature, 521(7553), pp. 467–475. [CrossRef] [PubMed]
Shepherd, R. F. , Ilievski, F. , Choi, W. , Morin, S. A. , Stokes, A. A. , Mazzeo, A. D. , Chen, X. , Wang, M. , and Whitesides, G. M. , 2011, “ Multigait Soft Robot,” Proc. Natl. Acad. Sci. U.S.A., 108(51), pp. 20400–20403. [CrossRef] [PubMed]
Morin, S. A. , Shepherd, R. F. , Kwok, S. W. , Stokes, A. A. , Nemiroski, A. , and Whitesides, G. M. , 2012, “ Camouflage and Display for Soft Machines,” Science, 337(6096), pp. 828–832. [CrossRef] [PubMed]
Pelrine, R. , Kornbluh, R. , Pei, Q. , and Joseph, J. , 2000, “ High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%,” Science, 287(5454), pp. 836–839. [CrossRef] [PubMed]
Ashley, S. , 2003, “ Artificial Muscles,” Sci. Am., 289(4), pp. 52–59. [CrossRef] [PubMed]
Carpi, F. , Bauer, S. , and De Rossi, D. , 2010, “ Stretching Dielectric Elastomer Performance,” Science, 330(6012), pp. 1759–1761. [CrossRef] [PubMed]
Rudykh, S. , Bhattacharya, K. , and Debotton, G. , 2012, “ Snap-Through Actuation of Thick-Wall Electroactive Balloons,” Int. J. Non. Linear. Mech., 47(2), pp. 206–209. [CrossRef]
Godaba, H. , Li, J. , Wang, Y. , and Zhu, J. , 2016, “ A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator,” IEEE Rob. Autom. Lett., 1(2), pp. 624–631. [CrossRef]
Wang, Y. , and Zhu, J. , 2016, “ Artificial Muscles for Jaw Movements,” Extreme Mech. Lett., 6, pp. 88–95. [CrossRef]
Shintake, J. , Rosset, S. , Schubert, B. , Floreano, D. , and Shea, H. , 2016, “ Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators,” Adv. Mater., 28(2), pp. 231–238. [CrossRef] [PubMed]
Brochu, P. , and Pei, Q. , 2010, “ Advances in Dielectric Elastomers for Actuators and Artificial Muscles,” Macromol. Rapid Commun., 31(1), pp. 10–36. [CrossRef] [PubMed]
Anderson, I. A. , Gisby, T. A. , McKay, T. G. , O'Brien, B. M. , and Calius, E. P. , 2012, “ Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines,” J. Appl. Phys., 112(4), p. 41101. [CrossRef]
O'Halloran, A. , O'malley, F. , and McHugh, P. , 2008, “ A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges,” J. Appl. Phys., 104(7), p. 71101. [CrossRef]
Goulbourne, N. , Mockensturm, E. , and Frecker, M. , 2005, “ A Nonlinear Model for Dielectric Elastomer Membranes,” ASME J. Appl. Mech., 72(6), pp. 899–906. [CrossRef]
Pei, Q. , Rosenthal, M. A. , Pelrine, R. , Stanford, S. , and Kornbluh, R. D. , 2003, “ Multifunctional Electroelastomer Roll Actuators and Their Application for Biomimetic Walking Robots,” SPIE Smart Struct. Mater., 5051, pp. 281–290.
Wang, H. , Li, L. , Zhu, Y. , and Yang, W. , 2016, “ Analysis and Application of a Rolled Dielectric Elastomer Actuator With Two Degrees of Freedom,” Smart Mater. Struct., 25(12), p. 125008. [CrossRef]
Poulin, A. , Saygili Demir, C. , Rosset, S. , Petrova, T. , and Shea, H. R. , 2016, “ Dielectric Elastomer Actuator for Mechanical Loading of 2D Cell Cultures,” Lab Chip, 16(19), pp. 3788–3794. [CrossRef] [PubMed]
Gupta, U. , Godaba, H. , Zhao, Z. , Chui, C. K. , and Zhu, J. , 2015, “ Tunable Force/Displacement of a Vibration Shaker Driven by a Dielectric Elastomer Actuator,” Extreme Mech. Lett., 2, pp. 72–77. [CrossRef]
Ave, N. M. , 2010, “ Artificial Muscle Actuators for Haptic Displays: System Design to Match the Dynamics and Tactile Sensitivity of the Human Fingerpad,” Electroact. Polym. Actuators Devices, 7642, p. 76420I.
Chouinard, P. , and Plante, J. S. , 2012, “ Bistable Antagonistic Dielectric Elastomer Actuators for Binary Robotics and Mechatronics,” IEEE/ASME Trans. Mechatronics, 17(5), pp. 857–865. [CrossRef]
Kollosche, M. , Zhu, J. , Suo, Z. , and Kofod, G. , 2012, “ Complex Interplay of Nonlinear Processes in Dielectric Elastomers,” Phys. Rev. E, 85(5), p. 51801. [CrossRef]
Lu, T. , Shi, Z. , Shi, Q. , and Wang, T. J. , 2016, “ Bioinspired Bicipital Muscle With Fiber-Constrained Dielectric Elastomer Actuator,” Extreme Mech. Lett., 6, pp. 75–81. [CrossRef]
Plante, J. S. , and Dubowsky, S. , 2007, “ On the Performance Mechanisms of Dielectric Elastomer Actuators,” Sens. Actuators, A Phys., 137(1), pp. 96–109. [CrossRef]
Kollosche, M. , Kofod, G. , Suo, Z. , and Zhu, J. , 2015, “ Temporal Evolution and Instability in a Viscoelastic Dielectric Elastomer,” J. Mech. Phys. Solids, 76, pp. 47–64. [CrossRef]
Koh, S. J. A. , Li, T. , Zhou, J. , Zhao, X. , Hong, W. , Zhu, J. , and Suo, Z. , 2011, “ Mechanisms of Large Actuation Strain in Dielectric Elastomers,” J. Polym. Sci., Part B: Polym. Phys., 49(7), pp. 504–515. [CrossRef]
Gu, G.-Y. , Gupta, U. , Zhu, J. , Zhu, L.-M. , and Zhu, X. , 2017, “ Modeling of Viscoelastic Electromechanical Behavior in a Soft Dielectric Elastomer Actuator,” IEEE Trans. Rob., 33(5), pp. 1263–1271.
Gu, G.-Y. , Gupta, U. , Zhu, J. , Zhu, L.-M. , and Zhu, X.-Y. , 2015, “ Feedforward Deformation Control of a Dielectric Elastomer Actuator Based on a Nonlinear Dynamic Model,” Appl. Phys. Lett., 107(4), p. 42907. [CrossRef]
Suo, Z. , 2010, “ Theory of Dielectric Elastomers,” Acta Mech. Solida Sin., 23(6), pp. 549–578. [CrossRef]
Zhao, X. , Hong, W. , and Suo, Z. , 2007, “ Electromechanical Hysteresis and Coexistent States in Dielectric Elastomers,” Phys. Rev. B, 76(13), p. 134113. [CrossRef]
Kofod, G. , Sommer-Larsen, P. , Kornbluh, R. , and Pelrine, R. , 2003, “ Actuation Response of Polyacrylate Dielectric Elastomers,” J. Intell. Mater. Syst. Struct., 14(12), pp. 787–793. [CrossRef]
Gent, A. N. , 1996, “ A New Constitutive Relation for Rubber,” Rubber Chem. Technol., 69(1), pp. 59–61. [CrossRef]
Zhu, J. , Kollosche, M. , Lu, T. , Kofod, G. , and Suo, Z. , 2012, “ Two Types of Transitions to Wrinkles in Dielectric Elastomers,” Soft Matter, 8(34), pp. 8840–8846. [CrossRef]
Zhao, X. , and Suo, Z. , 2007, “ Method to Analyze Electromechanical Stability of Dielectric Elastomers,” Appl. Phys. Lett., 91(6), p. 61921. [CrossRef]
Arruda, E. M. , and Boyce, M. C. , 1993, “ A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials,” J. Mech. Phys. Solids, 41(2), pp. 389–412. [CrossRef]
Rudykh, S. , and Boyce, M. C. , 2014, “ Transforming Wave Propagation in Layered Media Via Instability-Induced Interfacial Wrinkling,” Phys. Rev. Lett., 112(3), p. 34301. [CrossRef]
Plante, J.-S. , and Dubowsky, S. , 2006, “ Large-Scale Failure Modes of Dielectric Elastomer Actuators,” Int. J. Solids Struct., 43(25–26), pp. 7727–7751. [CrossRef]
Madden, J. D. W. , Vandesteeg, N. A. , Anquetil, P. A. , Madden, P. G. A. , Takshi, A. , Pytel, R. Z. , Lafontaine, S. R. , Wieringa, P. A. , and Hunter, I. W. , 2004, “ Artificial Muscle Technology: Physical Principles and Naval Prospects,” Ocean. Eng. IEEE J., 29(3), pp. 706–728. [CrossRef]
Umedachi, T. , Vikas, V. , and Trimmer, B. A. , 2016, “ Softworms: The Design and Control of Non-Pneumatic, 3D-Printed, Deformable Robots,” Bioinspir. Biomim., 11(2), p. 25001. [CrossRef]
Koh, J. S. , and Cho, K. J. , 2009, “ Omegabot: Biomimetic Inchworm Robot Using SMA Coil Actuator and Smart Composite Microstructures (SCM),” IEEE International Conference Robotics and Biomimetics (ROBIO 2009), Guilin, China, Dec. 19–23, pp. 1154–1159.
Wang, W. , Lee, J.-Y. , Rodrigue, H. , Song, S.-H. , Chu, W.-S. , and Ahn, S.-H. , 2014, “ Locomotion of Inchworm-Inspired Robot Made of Smart Soft Composite (SSC),” Bioinspir. Biomim., 9(4), p. 46006. [CrossRef]
Must, I. , Kaasik, F. , Põldsalu, I. , Mihkels, L. , Johanson, U. , Punning, A. , and Aabloo, A. , 2015, “ Ionic and Capacitive Artificial Muscle for Biomimetic Soft Robotics,” Adv. Eng. Mater., 17(1), pp. 84–94. [CrossRef]
Henke, E.-F. M. , Schlatter, S. , and Anderson, I. A. , 2016, “A Soft Electronics-Free Robot,” eprint: arXiv1603.05599.
Gisby, T. A. , O'Brien, B. M. , and Anderson, I. A. , 2013, “ Self Sensing Feedback for Dielectric Elastomer Actuators,” Appl. Phys. Lett., 102(19), p. 193703. [CrossRef]
Rizzello, G. , Naso, D. , York, A. , and Seelecke, S. , 2016, “ A Self-Sensing Approach for Dielectric Elastomer Actuators Based on Online Estimation Algorithms,” IEEE/ASME Trans. Mechatronics, 22(2), pp. 728–738.
Rizzello, G. , Naso, D. , York, A. , and Seelecke, S. , 2016, “ Closed Loop Control of Dielectric Elastomer Actuators Based on Self-Sensing Displacement Feedback,” Smart Mater. Struct., 25(3), p. 35034. [CrossRef]

Figures

Grahic Jump Location
Fig. 4

Force analysis of the soft planar actuator: (a) free body diagram of the top rigid clamp and (b) voltage and force applied to the membrane

Grahic Jump Location
Fig. 3

The experimentally recorded voltage as a function of the stretch, for springs with four different stiffness

Grahic Jump Location
Fig. 2

(a) Reference state, (b) prestretched state, (c) released state, (d) actuation state, and (e) schematic of the soft planar actuator

Grahic Jump Location
Fig. 1

A soft planar DEA: (a) at the reference state (Φ = 0) and (b) at the actuation state (Φ = 7.6 kV)

Grahic Jump Location
Fig. 10

Demonstration of a soft robot: (a) The experimental setup of the soft robot, (b) the amplitude of vibration as a function of actuation frequency, (c) the robot's velocity as a function of the voltage at ω = 0.5 Hz, and (d) the robot's velocity as a function of frequency at 6.5 kV

Grahic Jump Location
Fig. 7

(a)–(d) Theoretical curve for voltage as a function of the stretch for the actuators, associated with the springs of different stiffness. Before state A, the membrane is flat. After state B, the membrane is wrinkled. The dashed curve represents the dielectric breakdown. (e) The maximum actuation strain (defined as λ1/λ1p−1) as a function of the spring stiffness.

Grahic Jump Location
Fig. 8

(a) Schematic of the experimental setup to test the performance of the actuator under different loading conditions, (b) experimental data of the voltage as a function of the displacement when the actuator is subject to several different loads, and (c) calculation results

Grahic Jump Location
Fig. 9

Turning of the actuator: (a) voltage off (Φ = 0 kV) on both parts, (b) voltage off (Φ = 0 kV) on the left part and voltage on (Φ = 7.8 kV) on the right part, (c) model of turning actuator, (d) free body diagram of the top rigid clamp, and (e) the turning angle as a function of the voltage

Grahic Jump Location
Fig. 5

Calculation results: (a) voltage as a function of the stretch and (b) voltage as a function of the charge

Grahic Jump Location
Fig. 6

(a) Voltage as a function of the stretch and (b) the localized wrinkles are enclosed by the ellipses

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In